
Copyright is held by the author / owner(s). 
SIGGRAPH 2010, Los Angeles, California, July 25 – 29, 2010. 
ISBN 978-1-4503-0210-4/10/0007 

GPU Ray Casting of Virtual Globes

Patrick Cozzi∗ Frank Stoner†

Analytical Graphics, Inc.

(a) (b) (c) (d) (e)

Figure 1: (a) Front face culled bounding box (wireframe). (b) Ray/ellipsoid intersections in cyan. (c) Shaded, ray casted globe depth tested
against rasterized billboards. (d) Viewport-aligned ellipsoid bounding polygon reduces ray misses. (e) Wireframe bounding polygon overlay.

1 Introduction

Accurately rendering an ellipsoid is a fundamental problem for vir-
tual globes in GIS and aerospace applications where the Earth’s
standard reference surface is non-spherical. The traditional ap-
proach of tessellating an ellipsoid into triangles and rendering via
rasterization has several drawbacks [Miller and Gaskins 2009].
Geodetic grid tessellations oversample at the poles (2a), which
leads to shading artifacts and ineffective culling. Tessellations
based on subdividing an inscribed platonic solid lead to problematic
triangles crossing the International Date Line and poles (2b).

We present a new approach to globe rendering based on GPU ray
casting. Instead of tessellating the ellipsoid, we treat it naturally as
an implicit surface. Simple proxy geometry bounding the ellipsoid
from the viewer’s perspective is rendered in order to invoke a frag-
ment shader that casts a ray to find the ellipsoid’s visible surface and
shade accordingly. Our approach has the traditional advantages of
ray casting implicit surfaces: infinite level of detail, trivial memory
requirements, and simplicity. Furthermore, our approach reduces
ray misses, runs at real-time frame rates on commodity GPUs, and
easily integrates into existing rasterization-based engines.

(a) (b)

Figure 2: (a) Over tessellation at the poles. (b) Triangles crossing
the International Date Line (in blue).

2 Our Approach

We start by rendering the ellipsoid’s bounding box with front face
culling (figure 1a). This invokes a fragment shader that casts a ray
from the viewer to the fragment’s world space position, checking
for intersection with the ellipsoid. Figure 1b shows intersections in

∗e-mail: pjcozzi@siggraph.org
†e-mail: fstoner@agi.com

cyan and misses in gray. Fragments with ray misses are discarded.
Fragments with intersections are shaded using the geodetic surface
normal, yielding accurate lighting and texturing. Finally, the point
of intersection is transformed into window coordinates to compute
the correct depth value. Figure 1c shows a globe rendered using our
approach combined with rasterized billboards.

Next, we introduce two new optimizations based on transforming
the ellipsoid into a coordinate space where its representation is a
sphere. First, this simplifies the ray/ellipsoid test. Second, ray
misses can be reduced. Since the proxy geometry used to invoke
the fragment shader only needs to bound the ellipsoid from the
viewer’s perspective, a viewport-aligned convex polygon is suffi-
cient. We compute such a bounding polygon on the CPU in the
transformed space (figure 1d). The bounding polygon is then ren-
dered as a triangle fan in the original coordinate space. The number
of tangent points allows a trade-off between CPU/vertex processing
and fragment processing.

Using rasterization, rendering a globe resulted in rates of 112
fps (65,024 triangles) and 134 fps (960 triangles) on a NVIDIA
GeForce 8400 GS at 1440x900 resolution. Our bounding box ray
casting approach resulted in rates of 94 fps for full view and 78
fps for a horizon view (figure 1e). Our ray/ellipsoid intersection
and bounding polygon optimizations improve the rate to 111 and
94 fps, making GPU ray casting competitive with rasterization.

Given the increasing memory bandwidth bottleneck, we believe that
ray casting concise model representations, such as implicit surfaces,
will have widespread use. In future work, we plan to compute an
adaptive bounding polygon on the GPU and handle terrain by ray
casting height fields [Dick et al. 2009].

We thank Kevin Ring, Deron Ohlarik, Vince Coppola, Joe Kider,
Norm Badler, and Eric Haines for their input. We acknowledge Nat-
ural Earth (www.naturalearthdata.com) for raster data, and Yusuke
Kamiyamane (www.pinvoke.com) for icons.

References

DICK, C., KRÜGER, J., AND WESTERMANN, R. 2009. GPU
ray-casting for scalable terrain rendering. In Proceedings of Eu-
rographics 2009 - Areas Papers, 43–50.

MILLER, J. R., AND GASKINS, T. 2009. Computations on an
Ellipsoid for GIS. Computer-Aided Design and Applications 6,
4, 575–583.


